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Abstract

In this study, we present an efficient approach to recover
3D human motion from monocular image sequences in gen-
erative reconstruction framework. This approach is based
on the extracting of motion base space. From the motion
capture data with bothersome high dimension characteris-
tic of human activity, we extract the motion base space in
which human pose can be described essentially and con-
cisely by a more controllable way. And then, the structure
of this space corresponding to some special activities such
as walking motion is explored with data clustering. For the
single image, Gaussian mixture model is used to generate
the candidates of 3D pose. The shape context is the com-
mon descriptor of image silhouette feature and synthetical
feature of human model. We get the shortlist of 3D poses by
measuring the shape contexts matching cost between image
feature and the synthetical features. In tracking situation,
an AR model trained by the example sequences produces
almost accurate pose predictions. Experiments demonstrate
that the proposed approach works well.

1. Introduction

Inferring 3D human pose from 2D images is a significant
problem in computer vision. For many image understand-
ing applications, The 3D configurations of people in images
provide usable semantic information about human activity.
This is a challenging problem suffering from the obstacles
conduced mainly by the complicated nature of 3D human
motion and the information loss of 2D images. There are
two main state-of-art approaches to deal with this problem
[3]. Discriminative methods try to find the direct mapping
from image feature space to pose state space by learning the
mapping models from the training examples. This approach
can supplies effective solution schemes for pose recover-
ing problem if some additional issues can be well solved.
However, the inherent one-more mapping from 2D image
to 3D pose is difficult to learn accurately because the condi-
tional state distributions are multimodal. The quantity and

quality of training samples are also key factors, which can
lead to some intractable problems to deal with. Genera-
tive methods follows the prediction-match-update philoso-
phy. In the prediction step, the pose candidates are gener-
ated from the state prior distribution. The followed match
step evaluate the pose-image similarity with some measure-
ment. Finally, the optimal solution is found by the state
update operation. Such approach has sound probabilistic
support framework but generally computationally expen-
sive because of the complex search over the high dimension
state space. Moreover, prediction model and initialization
are the bottlenecks of generative method especially for the
tracking situation.

In this paper, we present a novel generative approach,
by which we try to widen the bottlenecks mentioned above
with lower computing expense. We represent the human
poses by a 3D body model explicitly, whose configurations
are expressed by the joint degrees of freedom (DOFs) of
body parts. In our body model, there are more than fifty full
body DOFs. This is a very large state space to search for
the correct poses matching with the given images. Hence,
the state space should be cut in order to avoid absurd poses.
In general, the reasonable pose datum pool in some com-
pact subspace of the full state space. We extract the sub-
space with the principle component analysis (PCA) of mo-
tion capture data. In this concise subspace, there are some
advantageous characteristics for pose estimation, which will
be introduced detailedly in the followed sections. Based
on the consistency of human motion, the structure of this
subspace is explored with data clustering and thus we can
divide the whole motion into several typical phases repre-
sented by the cluster centers. States prediction is a com-
mon difficulty of complicated non-linear problems for the
absence of effective prediction model. We choose the Gaus-
sian mixture model as state prediction model because this
model can well approximates the multimodal pose distribu-
tion with the outcomes of data clustering. By the efficient
shape contexts [5] matching, we evaluate the pose predic-
tions and finally recover the 3D human pose. In the tracking
situation, the state prediction is guided by an autoregressive
process. In sum, the main contributions of this paper are as
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follows:

• We propose an motion base space extracting idea for
the high dimension non-linear pose recovering prob-
lem. From the motion capture data of some kind of
human motion, a compact base space indicating the
common identity of this motion is extracted. This re-
sults in directly the effective analysis and computation
for pose estimation.

• The fast automatic initialization for pose tracking is
achieved by utilizing the Gaussian mixture model in
conjunction with the outcomes of base space analysis.

• Built on the base of shape contexts matching, a dis-
criminative and robust pose evaluation framework is
presented.

• In the compact base space, we use a second order au-
toregressive process to simulate the state evolvement.
The parameters of this dynamical model is learnt from
training examples and can be corrected continually in
the tracking process.

2. Related Work

There has been considerable prior work on human pose
recovering [1, 2, 3]. However, this problem still hangs
in doubt because it’s ill-conditioned in nature. For know-
ing how the human 3D pose is configurated, more infor-
mation are required than images can provide. Therefore,
much work focus on using prior knowledge and experien-
tial data. Explicit body model embody the most important
prior knowledge about human pose and thus are widely used
in human motion analysis [1]. Another class of important
prior knowledge comes from the motion capture data. The
combination of the both prior information causes favorable
techniques for solving this problem.

Agarwal and Triggs [4] distill prior information of hu-
man motion from the hand-labeled training sequences using
PCA and clustering on the base of a simple 2D human body
model. This method presents a good tracking scheme but
has no description about pose initialization.

Urtasun et al. [6, 7] construct a differentiable objective
function based on the PCA of motion capture data and then
find the poses of all frames simultaneous by optimizing the
function. Sidenbladh et al. [8, 9] present the similar method
in the framework of stochastic optimization. For a specific
activity, such methods need many example sequences for
computing the PCA and all of these sequences must keep
same length and same phase by interpolating and aligning.
Huazhong Ning et al. [12] learn a motion model from semi-
automatically acquired training examples which are aligned
with correlation function. Unlike these methods, we extract

the motion base space from only one example sequence of
a specific activity using the lengthways PCA and thus have
no use for interpolating or aligning.

The methods mentioned above utilize the prior informa-
tion in generative fashion. By contrast, discriminative ap-
proach [13, 14, 15] makes use of prior information by di-
rectly learning pose from image measurements. In [13],
Agarwal and Triggs present several regression based map-
ping operators using shape context descriptor. Sminchis-
escu et al. [14] learn a multimodal state distribution from
the training pairs based on the conditional Bayesian mixture
of experts models. These methods can bring the interest of
fast state inference after finishing the training. However,
they are prone to fail when the small training database are
used.

The styles of using prior information are multiform.
Mori et al. [10] contain the prior information in the stored
2D image exemplars, on which the locations of the body
joints are marked manually. By the shape contexts match-
ing with the stored exemplars, the joint positions of the in-
put images are estimated. And then, the 3D poses are re-
constructed by the Taylor method [16].

Comparing with these methods, extracting the common
characteristic of a special motion type from prior informa-
tion is of particular interest to us. At the same time, we
ensure the motion individuality of the input sequences in
the generative framework with a low computational expense
based on the efficient analysis of prior information.

3. State Space Analysis

In this study, we represent the 3D configurations of hu-
man body as the joint angles vectors of body model. These
vectors reside somewhere in the state space. The potential
special interests motivate us to analyze the characteristics
and structure of this space. Such interests involve mainly
modeling the human activities effectively in the extracted
base space and eliminating the curse of dimension.

3.1. Pose Representation

We represent the human pose using the explicit body
model. Our fundamental 3D skeleton model (see Figure.
1a) is composed of 34 articulated rigid sticks. There are
58 pose parameters in our model, including 55 joint angles
of body parts and 3 global rotation angles. Therefore, each
body pose can be viewed as a point in the 58D state space.

Figure. 1b show the 3D convolution surface [17] hu-
man model which actually is an isosurface in a scalar field
defined by convolving the 3D body skeleton with a kernel
function. Similarly, the 2D convolution curves of human
body as shown in Figure. 1c are the isocurves generated
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(a) (b) (c)

Fig. 1. (a) The 3D human skeleton model. (b) The 3D human
convolution surface model. (c) The 2D convolution curves.

by convolving the 2D projection skeleton. As the synthet-
ical model features, the curves will match with the image
silhouettes.

3.2. Extracting the Base Space
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Fig. 2. The manifold of the walking sequences in 3D base space

All of the human poses distribute in the 58D state space.
The poses belong to a special activity, such as walking, run-
ning, handshaking, etc., generally crowd in a subspace of
the full state space. We extract this subspace from the mo-
tion capture data obtained from the CMU database [18].

According to the linear PCA, any pose vector X(t) ∈ Rq

(t is the time tag) in a training sequence can be expressed
as:

X(t) = Xm + x(t) · Θp (1)

where Xm ∈ Rq is the mean pose vector of the whole se-
quence and Θp is the base matrix based on which the base
space is expanded. x(t) ∈ Rp is the pose vector in the base
space.

p(< q) is the dimension of the base space. Here, we take
p = 5, which means that recovering the human pose in the
5D base space only lose negligible information. This can be
seen from the Table 1.

Table 1. The cumulative covariance percentage

cumulative  covariance contribution  percentage      (the first 5 bases)

walking 58.69 79.18 88.67 94.50 96.02

running 54.85 77.18 93.01 95.21 96.95

handshaking 51.04 69.09 81.17 85.94 89.12

In this way, we extract the base space (Θp) covering a
special human activity from a single training sequence. Ac-
tually, the training sequences belonging to a same motion
type but performed by different subjects can produce similar
outcomes. For example, our experiments demonstrate that
the walking training sequences generate the similar mani-
fold in the 3D base space as shown in Figure. 2. Thus,
by extracting the base space, we represent the pose as a 5D
vector in base space and the original state can be obtained
immediately using the PCA injection.

3.3. Analyzing the Base Space

The interests of extracting the base space include not
only the dimension reduction but also the advantages for
analyzing. We have known that the special human motion
type show the special manifold in the base space. Essen-
tially, this manifold indicate the common identity of the
motion type. Therefore, our focus are transferred from the
base space to the more local part: special manifolds which
actually are the point set (the set of x(t)) presenting special
geometry shape in the base space.
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Fig. 3. The k-means clustering of state variables.

We analyze the manifolds with the k-means clustering.
Based on the activity continuity, the set of x(t) can be parti-
tioned into different connected subsets and every subset rep-
resents a special motion phase. Here, we choose the number
of clustering as 4. Figure. 3 shows the clustering outcome
of joint angles. We represent the clustering outcome as four
point sets: C1,C2,C3,C4 and the centers of these sets are
xc1, xc2, xc3, xc4, respectively. Every clustering center is the
key-frame of the motion sequence. Figure. 4 shows the 3D
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human poses corresponding to the clustering centers.

Fig. 4. The pose key frames in walking sequence.

In the followed tracking process, the clustering outcomes
are used in the pose prediction model.

4. Image Matching Likelihood

In generative framework, pose recovering be formulated
as a Bayesian posterior distribution inference:

p(x | O) ∝ p(x)p(O | x) (2)

Where O represents the image observations. The likelihood
function p(O | x) is used for evaluating every pose candidate
generated by the prediction models.

We choose the image silhouettes as the observed image
feature as shown in Figure. 5.

(b)(a)

Fig. 5. (a) Original image. (b) Image silhouette.

We describe the image silhouettes and the convolution
curves using shape context descriptor [5], a robust and dis-
criminative shape descriptor. The likelihood function is
constructed by the shape contexts matching [11]. In the
matching process, we first sample the edge points of the im-
age silhouettes as the query shape. Next, the point set sam-
pled from the convolution curves are as the known shapes.
Before matching, the image shape and the candidate shape
are normalized to same scale. We denote the image shape
as Squery and the candidate pose shape as Si. The matching
cost can be formulated as:

Cv(S query, S i) =
r∑

j=1

χ2(S C j
query, S C∗i ) (3)

where S C is the shape context, r is the number of sample
point in image shape, and S C∗i = argminuχ

2(S C j
query, S Cu

i ).
Here, we use the χ2 distance as the similarity measurement.

5. Tracking

For image sequences, tracking means that the pose esti-
mation in current time step depends on the outputs of previ-
ous estimation. Thus, the most important part of tracking is
dynamical model which indicates how the state evolve with
time. Another intractable problem in tracking is the state
initialization. In this section, we deal with the problems of
tracking based on the outcomes of state space analyzing in
generative framework.

5.1. Initialization

Initialization is the first step of tracking, aiming for find-
ing the correct pose of the first frame in a given image se-
quence. We present an auto-initialization scheme based on
the Gaussian mixture model.

In the base space depicted in section 3, a pose x can be
viewed as a 5D random vector which is generated from a
multimodal distribution. This distribution can be formu-
lated as:

p(x) =
c∑

i=1

ωi · N(x, xci,Σi) (4)

where, c = 4 is the number of pose clustering, {ωi : i =
1, 2, 3, 4.

∑4
i=1 ωi = 1} are the weights of single Gaussian

distributions and {Σi : i = 1, 2, 3, 4} are the variances of
these distributions which can be computed from the training
sequence.

The procedure of auto-initialization is performed as fol-
lows:

1. Estimating of the global rotations by:

(a) Partitioning the global angle scopes into 8 bins
(Relying on the robustness of the matching
method, 8 bins is enough.).

(b) Generating N samples from each single Gaussian
distribution in every bin. (In our experiments,
N = 3.)

(c) Performing shape contexts matching between the
query image and convolution curves produced by
the sample poses.

(d) Evaluating the bins according to the matching
score. The bin containing the minimum cost
score wins. By the way, recording the matching
scores of every sample pose.

2. Determining the pose in the query image.
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(a) Generating pose samples from the Gaussian mix-
ture distribution as formulated in the equation
4. The weights are determined as follows: (1)
Taking out the minimum matching score of each
Gaussian distribution from the winning bin (see
step 1). (2) Obtaining the weights by normalizing
the matching scores to [0, 1].

(b) Evaluating these pose samples and determining
the pose shortlist in which there are n samples
with minimum matching scores.

(c) The final pose is the weighted sum of poses in
shortlist.

5.2. Dynamical Model

Because of the complicated nature of human motion, it’s
difficult to obtain an analytical physical model for it. We
prefer to seek the statistical dynamical model of human mo-
tion from the training data. Similar to the model introduced
in [4], we learn a second order Auto-Regressive Process
(ARP) for the time domain prediction of pose in the base
space.

In tracking situation, the probability distribution of pose
in time t can be formulated as:

p(xt | O) ∝ p(O | xt)p(xt | Xt−1) (5)

in our model, Xt−1 = {xt−1, xt−2}. And the prediction distri-
bution p(xt | Xt−1) is modeled by the second order ARP:

xt =M1xt−1 +M2xt−2 + vt (6)

where the fifth order matrices M1,2 and the variances of
Gaussian white noise vt are learnt from the training se-
quences. These parameters are corrected in the process of
pose recovering according to the estimated outcomes.

Guided by the dynamical model, we find the correct
poses using particle filter. The computational expense of
our method is low, because the special manifold which rep-
resent the common characteristic of special motion type in
the base space lead to the accurate dynamical model and
therefore tracking can be proceeded with few particles.

The results of tracking are shown in Figure. 6. Experi-
ments demonstrate that our method works well.

6. Conclusion

We have introduced a novel approach to tracking 3D hu-
man motion. This method extract the compact base space
from motion capture data which contain the prior informa-
tion about human motion. Actually, in so doing, we extract
the nature of a motion type and represent it by a compact
way. Corresponding to a special motion type, a special man-
ifold in base space indicates the common identity of this

Fig. 6. The tracking results.

motion type. This can lead to the efficient estimation of hu-
man poses. We use the shape context matching to measure
the similarity between the query image and the candidate
poses. Experiments demonstrate that this is a robust and
discriminative matching method. As the predict model, the
Gaussian mixture model and the ARP model wok well in
the process of tracking.

In terms of future work, we will cover more types of
human motions by including a wider range of training data.
We plan to improve the matching method in order to reduce
the computing expense further. And, the conception of base
space will be extend to the recognition of human activity.
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